
.I. Appl. Maths Me& Vol. 56, No. 6, pp. 881-888,1992 0021-8928/92 $24.00+.00 

Printed in Great Britain. 0 1993 Pergamon Press Ltd 

INTEGRAL ESTIMATION AND ADAPTIVE STABILIZATION 
OF NON-HOLONOMIC CONTROLLED SYSTEMS-f 

V. Yu. TERTYCHNYI 

St Petersburg 

(Received 16 October 1991) 

A method for the programmed stabilization of non-holonomic dynamic systems is proposed. The original 

problem is reduced to a constrained adaptive control problem with unknown perturbations, which are 

represented by the reactions of linear (not necessarily ideal) non-holonomic constraints. Effective control 

and parameter estimation algorithms are constructed for the exponential stabilization of the system. The 

method can be extended to non-holonomic systems whose parameters are not known in advance or undergo 

an unknown bounded drift with time. 

THE STABILIZATION of controlled systems with holonomic constraints [lA] and the stabilization of 
their adaptive [5-91 and stochastic [5, 10, 111 versions have been considered previously. It is of 
interest to consider variable-structure deterministic systems and systems operating in the presence 
of unknown parameter drift. If the drift model is known, the adaptive feedback design scheme can 
be reduced to standard recursive estimation procedures. If the parameter drift model is unknown, 
the control system is chosen using filters [7, 121. The stabilization of systems with a memory under 
prior uncertainty using proportional-plus-integral controllers has been considered in [ 13, 141. 

1. STATEMENT OF THE PROBLEM 

Consider a non-holonomic system whose dynamics are described in generalized coordinates by 
equations with undetermined Lagrange multipliers 

d aT i-IT r 
afk 

-_ -=&+ z hk - 
dt aq; aqi k=l a4 

(1.1) 

T= .i i Aij(qtiiq)v 
2 i,j=I 

q(O) =qO, 4’ (0) = 4; (1.2) 

where 4 (t), u(t) E R” are vectors of generalized coordinates and generalized controls, respectively, 
and hk are the undetermined Lagrange multipliers in the expression for the constraint reaction 
forces. We will assume that the vectors q(t) and q’(t) are observable in the control system at any 
time; T is the kinetic energy and A, are the elements of the symmetric positive definite square 
matrix A (q). The system is subjected to r non-holonomic first-order constraints linear in 43’ , which, 
in general, are represented by smooth hypersurfaces of the form 

subject to the constraints 

fk((li, df, t> = 0 (k = 1, 2, . . . , r) (1.3) 

rank (1.4) 
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In (1.4), the first equality is Chetayev’s condition [IS] imposed on the allowed virtual 
displacements 64, (for linear non-holonomic constraints this condition is obviously always satisfied), 

and the second equality is the condition for the constraints (1.3) to be independent, which enables I 
dependent velocities to be expressed in terms of the s independent velocities (s = TI- r is the number 
of degrees of freedom) [16] 

.fk(qfp 4;y t)=q$+k- (Pk(41s.. I 4n, 4’1,. . , 4;, t’b=O I 1 .i ’ I I 

Henceforth, we shall use the notation q,?(t) [q(i (t)] ER” for the independent coordinates 

(velocities) and qp(t) [q; (t)l~R’ for the dependent coordinates (velocities). In this notation. 
q(f) = [qa(t), qp(t)]. Then (I .5) may be rewritten in vector form as 

4b =4P(4* 401. f) ( I -hi 

Substituting (1.2) into (1. l), we obtain the vector-matrix form of the equations of motion 

A(4)4” + B(4, 4’ ) = u + D(4) x (1.‘) 

where A(t) E R’ is the vector of undetermined Lagrange multipliers, and D(q) is the y1 x r structure 
matrix with the elements df,,ldqlT (k = 1, 2, , r, i = 1. 2. , n). We may assume without loss of 
generality that the constraint equations are time-independent. We now use (1.6) to substitute the 
expressions for 4;’ into Eq. (1.7) 

. . 

A(q) II 
4a 

Fl(4, 4’14 + F*(4)4, 
II +m, 4’)‘U +wl)x 

Fi (q, q’) is the r x n matrix with elements dq’131aqJ, and F2 (q) is the r x s matrix with elements 

a&3&b, 3 s = rz- r. Separating the vector of independent accelerations qi’ in this equation. we 
obtain 

Sl G?IMa +&CA 4’ I= u + WI) h 

s,(q)=Al(q)+A,(q)F,(q) ( I .i;i 

&(4, 4’) =B(4, 4’) + &(4)F1(4, 4’)4’ 

whereSl(q)isannxsmatrix.S~(q,q’)isanrzxlvector,R(q)=~~A,(q)~A2(q)~~,Al(q)isanr~r:s 

matrix, and A*(q) is an n x r matrix. 
A specific feature of Eqs (1 .S) is that they contain n x r unknowns. Since r equations of the 

constraints have been used to separate the independent accelerations, we cannot use Eqs (1.3) and 
(1.6) again to find all the unknowns. Equation (1.8) thus includes the unknown deterministic 

perturbations u(q, t) = D(q) A (t), where A(r) plays the role of an unknown drifting vector 

parameters, and the control system itself becomes adaptive. We will assume that the perturbations 

u(t) are uniformly bounded (supoGrcr, liv(t)ll< C,, ) and that the bound C, on the Euclidean norm in a 

finite time interval is also unknown. 
In (1.1) it is required to construct: 
1. an adaptive feedback control as a function of the observable arguments 

u = u(4(0, 4.(t), 4orp(.), n*(t)), II~II<G 

where C,, is a given positive constant, u.(t) E R” is the estimated parameter vector, and qa,, (t) is the 
programmed motion of the system in the independent coordinates defined in the entire finite time 

interval [0, ti] (the time t, is not fixed); 
2. an algorithm for estimating u*(t), 

v; = rJ, (4(r), q’(t), 

which ultimately satisfies the objective conditions 

II 4a(t) - 4olp (t) II < 6 1 , 

where 6, , 6,>0 is the given stabilization accuracy 

4ep(, ). u*(f)) 

II U, (f> - n(t) II < 62 (1.9) 
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The second inequality in (1,9) obviously ensures tracking of the system constraints with a certain 
accuracy Ss (8,); the estimates V, and A, are related by the algebraic equalities 

u* =DX,, A, = D+v,, D+ = (DID)-‘D’, rank D = r 

where the prime denotes the transpose. 

2. ADAPTIVE FILTERING 

In Eq. (1.8)) we assume the following control law 

u =&(a q’)+&f4)4* - u* 
. . qt = qap - Pl t&Y - Q&d - P2(4a - 4cYp) 

(2.1) 

where p, , &_,>O are given numbers. As the estimation algorithm for choosing u, , we take the 
first-order differential equation 

u* - v’ty(v* - v)tv’e--rr=o 

(r>O is a given number) with the solution 

~,(t)=(l-e~~~u(r)+e~~~u,(O) 

(2.2) 

that ensures satisfaction of the second objective condition in (1.9) in a finite time interval. 
Substituting (2.1) into the equation of motion (1 A), we obtain 

Sl(4)GIb; - q*)=v- u* (2.3) 

Noting that Sr (4) is bounded and the norm I[u - u, 11 is exponentially decreasing, we obtain the 
equations 

4;r - q&l+ I% Myi - &rpf ) +&6&i - &pi) = \trr 0 = 192, * . - I s) 

which obviously ensures satisfaction of the first objective condition in (1.9) when the scalar function 
I&(C) tends exponentially to zero. 

Let us extend the de~nition of the estimation algorithm (2.2). To this end, we solve Eq. (2.3) for 
the vector u 

v=u, +G, G =S,@b; - 4*) (2.4) 

and substitute u, u’ from (2.4) into the convergent algorithm (2.2) to obtain estimates of u, 

(e -rf- l)G’-yGte-7tu; ~0. (2.5) 

Note that the coefficients in Eq. (2.5) depend on q, q’, q”, q”‘, whereas the control systems are 
limited to measuring only q and q’. We accordingly integrate Eq. (2.4) twice with weight e-df--S) 
(K>O) over the interval [0, t]. 

Let 

(u)_, = ;e-K 
ts 

(r-~)u(s)~s, [u]_~ = J {e-K(r-r) u(~)~r~~ 
0 00 

We replace the estimation altorithm (2.2) with the smoothed analogue 

v; - V’ tT(V* - v)t V’e-rr=O 

where V(t) and V,(t) are the outputs of the filter 

v’ +Kt’-=CJ(K-&-Et+h)_K 

with the solution 

(2.6) 

(2.7) 
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V(t)=ue-(‘+ [VI_., V(0) = v 

V(t) = -vie -‘r+(“)_K K["]_, 

and the filter 

v; +KvI* =l’,(K--)e-‘r+(“,)_, (2.8) 

with the corresponding solution, where V,(O) = u.+; @, K>O, v, Y, are given numbers and vectors. 
Substituting the solutions of the filters (2.7) and (2.8) into (2.6), we obtain the estimation algorithm 
in the following form 

(u,- u)_, =(v, - v)(t-y)emtf-(y--K)[u,- u]-K tu{e-(E+Y)t- 

-e --Yf(">_ tKe-y"]_K K (2.9) 

We will show that algorithm (2.9) converges for (T = y - K >O, 7 = [-- K > 0. Using the notation 
t f 

A(t) = u,(t) - u(t), x(t) = A(t)e”‘, Y(t) = Sx(s)ds, F(t) = SY(S)& 
0 0 

P(t)=(v,-v)(4-~)e-~rtvEe-(~+Y)r-e-Yr(u)_K+Ke-rr[u]__ 

we obtain the solution of Eq. (2.9) F’(t) = -oF(t) + e”‘/‘(t) in the form 

F(r)=;y(s)ds=v,(e-“- e-‘3+ue-rr(l -e-Y3-e-"r[u]_K +Ke-"r/["]_,dr 

0 

Differentiating twice with respect to t and multiplying by e - K’, we establish an exponential decrease 
of the norm I/u,(t) -u(t)11 as t increases which in turn ensures that the first objective condition in 
(1.9) is satisfied. If we now integrate Eq. (2.4) twice with weight e- K(‘--.y) and substitute the result 
into (2.9), we obtain a convergent algorithm for estimating “, 

((e -yr- l)G)_, -(a-Ke-rp[G]_K =(v, - v)(.!- y)e-[‘+ 

+z&-(E+r)r- emYr(u,)_, +Ke-Yr[u,]_K 

which ensures that the objective inequalities are satisfied in a finite time interval 

(2.10) 

3. RECURSIVE ESTIMATION 

Let us convert Eq. (2.10) into a form such that the algorithm depends only on 9 and y’. ‘IO this 
end, we will naturally use the fact that the vector qz’ occurs linearly in G. Omitting the element- 
ary algebra associated with integration by parts, we obtain in the new notation 

(u, )_-K - K[“,]_, = +(t)eeKr (3.1) 

@(f)=Ql(t)+$(f), Ql(t)=(eYr- l)(q(t)-u- J$(s)ds)+ 
0 

f s 

t(uerr- K) J‘&'(S) - Q - ~'b(r)dr)& df) = &(t)qb,(t)eKr. 
0 0 

~(t)=K~(t)+(Sl(t)4~(t)-Sl(t)q.tt))eKr, ~=sl(o)h(O), 

$(t)=(V, - V)(,$- y)e(7-T)rtvt;e-7r 

Solving the differential equation (3.1) for e”‘[u*]-K, we obtain a Volterra linear integral equation 
of the first kind 

t u, )_ K = \k(t) (3.2) 
*(t)=(.K(@), +@(t))e-“’ 
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A specific feature of Eq. (3.2) is that it cannot be differentiated: the right-hand side 9(t) depends 
on q and q’, and we must obviously use some approximate method [17, 181: the method of 
moments, the kernel change method, the polynomial method, the coefficient averaging method, the 
oscillating function method, etc. The main condition for uniform convergence of recursive 
algorithms in the interval of definition is the continuous differentiability of the kernels with respect 
to all arguments. If we restrict the analysis to approximation by a numerical quadrature formula 
with the integration nodes to, ti , . . . , t,,, , the recursive system of equations for finding the estimates 
V, takes the form 

N 

Iz CJfk u, (tk) = \k(tN)eK tN 
k=O 

(3.3) 

where ck are the coefficients of the corresponding quadrature formula. The system of equations 
(3.3) provides the most efficient method of replacing the integral equation (3.2) [17, 181. 

4. THE CHAPLYGIN-CARATHl?ODORY PROBLEM 

As an application of the proposed method for choosing an adaptive control system, consider the model 
non-holonomic motion of a rigid body in a stationary horizontal plane 0. The body has three points of contact 
with the plane, two of which slide without friction on the plane and the third is the point of contact of a sharp 
runner (a blade) rigidly connected to the body [19]. The point of contact of the blade K can move freely on the 
plane fl along the blade, but not perpendicularly to the blade. 

We introduce two systems of coordinates (Fig. 1): the fixed system Oxy and the moving system Kxlyl 

attached to the body. The fiI axis is directed along the runner and the Kyl axis is perpendicular to Kxl . The 
position of the body (a trolley) is defined by three generalized coordinates: the coordinates x, y of the point K 
and the angle cp between the axes Ox and Kxl . Let m be the mass of the body, a and b the coordinates of the 
centre of mass C in the system Kxlyl , and J,, the moment of inertia of the trolley about the vertical through the 
point C. We will assume that three generalized control forces act along the three generalized coordinates. The 
constraint imposed on the system ensures that the velocity of the point K is always directed along the Kxl axis, 
i.e. y’ = X’ tgcp. The kinetic energy is 

T= %(ml$ + J, 9.2) = 

=Hmf[X~-~Ip’~uSinlp+~COS~~J~+[~‘+~p’(uCOSlp-~bsinIp)]~+k*lp’~~ 

where k is the radius of the body about the axis through the point C perpendicular to the plane s2. 
The system has two degrees of freedom. As the independent coordinates we take q1 = x and q2 = ZU; the 

dependent coordinate is q3 = y. We form Eqs (1.1) of controlled motion in each coordinate with one 
undetermined Lagrange multiplier A. Then 

mq;* + ccq;’ - pq;= = u, + A tg q1 

aq;’ + 74;’ + P(4;’ - 2q; q;) = u, 
. . 

mq,+pq’;+aq;2=u,-h 

a=-m(u sinq, +bcosq2), fl=m(ucosq, -bsinq,) 

r=m(u2+b2 +k2) 

FIG. 1 



886 v. Ytl. 1'EKTYCMJYI 

The vector-matrix equations (1.7) and (I .8) contain the following matrices and vectors 

In particular, for the simplest case when the projection of’ the centre of mass is at the point K (the 

Carat~~od~r~ case), we obtain for the control Iaw 

where the estimates u* are solutions of the recursive linear system of algebraic equations (3.3). When the 
control II is substituted into the equations of motion, they produce exponential stabiiizat~on of the system 
relative to the programmed trajectories. 

For many dynamical systems it is important to ensure optimahty at any current instant of time. AS 
an example, consider the maximization of the stabilization accuracy over a long time interval. The 
obvious criterion in this case is a functional which is defined on the current state of the system and is 
a measure of the perturbed state. Such a functional is provided by an integral quadratic form (a local 
Lyapunov fnnctiona~) or by the generalized work criterion [ l--S]. 

To sotve the optimal stabilization problem for system (1.7) with the constraints ( f .6), we augment 
the objective conditions (1.9) with the requirement that at each time instant f the following 
functional is minimized 

where Q, and Q2 are symmetric matrices that can be factorized in the form Qi = X:X, (i L= 1.2) for 
some full-rank rectangular matrix X, and Q2 = S;Sr is an s xs matrix. 

The optimal control u<)(t) is sought in the class of continuous functions with values in UC R”. We 
also assume that the functional J(t) has a total derivative dJ/dt calculated by Eq. tl.8). 

For W1 (t) = 0, the functional J(r) = JVZ(t) may be treated as the measure of the perturbed state 
of the process. To find the locally optimal control u<)(t), we use the condition 

(the necessary and sufficient condition of Iocaf optima~~ty~. 
The objective relationships are obviously satisfied if z(r) tends to zero as r increases, i.e. if the 

controlled process is asymptotically stable in the measure of the perturbed state Wz(tf. If the 
functionals WI (t) and W2 (1) are uniformly continuous and positive definite and in (5.2) we have 
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d/ldtI.&) = min dl/dt = 0 (5.3) 
u(t) 

then the process z(t) (qa = qup) is asymptotically stable and the control uo(t) is locally optimal. 
Indeed, from (5.2) we directly obtain optimality of the control and an equation for finding the algorithm for 

estimating v,(t) 

Hence dW,(t)/&<O and the functional Wz(t) satisfies the conditions of Lyapunov’s theorem Of asymptotic 
stability. 

Differentiating J(t), we obtain by virtue of (1.8) an expression for the optimal control 

140 =-Q;’ S,z. 

If we now substitute (5.4) into dlldt, we obtain 

dl/dt =z’S’,Q;’ Slz + d(z’Q,z)/dt 

The matrix Q,’ in (5.5) is defined in the form 

Qi'(Ue)*dMg(Ge, ui.,...,ui*) 

(5.4) 

(5.5) 

where v, are the estimates of the unknown perturbation vector u. Equating (5.5) to zero, we thus 
ensure that the objective conditions are satisfied. 

Cancelling the vector Z’S; , we obtain an equation for the estimates u, 

2S1b)Z + S; 61, 4’)~ + Q;' WSI (4)~ = 0 
(5.6) 

z’ = 4; + cp, cp=-&J+PNc-&Yp) 

Let us transform Eq. (5.6) to a form in which its coefficients depend only on q and q’ 

S,cp-SZ +$z+u- !. Q;lS,z=O 
2 

(5.7) 
Si qz +S, = -Qi’ S~Z t u 

We change to the smoothed analogue of (5.7) by replacing v(t) with the n-dimensional output 
V(t) of the filter 

v’ +Kl/=(U)_, (54 

with the solution 

V(t) = ve -Kr+ [VI-,, v(o)=V; K >o 

We apply the previous scheme: we integrate twice the equation for u of the system with weight 
e-d(f--S) over the interval [0, t] 

[u]-, = [ slq, +& + Q;’ &Z] --K (5.9) 

Using (5.9), we rewrite the filter equation (5.8) in the form 

V’+KV=LSz+Q;lSI)-K+S1q~-S1(0)q~(O)e-Kf-~(~S1 +Si)qh)-K (5.10) 

where the input of the filter (5.10) are the values q, q’ and the estimate u,. 
If we now substitute the solution of the filter into the smoothed analogue of Eq. (5.7), we obtain 

the estimation algorithm in the form 

[Q;‘S,z]_, - %Q;‘S,z =f(t) 

f(t)=& -S1q-%S,z-ve-Kr- [s,]_K - (5.11) 

where the vector-valued functionf(t) depends only on q and q’. Equation (5.11) can be represented 
as a system of integrodifferential equations 
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Jf y(s)& -y’(t) = F(t) 
0 

1 

y(t) = .fx(s)ds, x(t) = Q;‘SlzeKr, E’(r) =f(t)e” t 
0 

which, as we have shown previously, can be solved numerically by reduction to a recursive system of 
algebraic linear equations using quadrature formulae. 

The adaptive stabilization method proposed in this paper can be extended in a natural way to 
non-holonomic systems whose internal parameters are not known in advance or undergo a~ 
unknown bounded drift with time 
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